

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Room 104, 205, Building 1, No. 6, Industrial South Road, Songshan Lake District, Dongguan, Guangdong Province, P. R. China 523808 TEL: +86-0769-22212330 Email: qc@baluntek.com 1 / 58

Revision History

Version <u>Rev. 01</u> Issue Date Dec. 25, 2020 Revisions Content Initial Issue

TABLE OF CONTENTS

1 GENERAL INFORMATION	
1.1 Identification of the Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	4
1.3 Laboratory Condition	4
1.4 Announce	4
2 PRODUCT INFORMATION	5
2.1 Applicant Information	5
2.2 Manufacturer Information	5
2.3 Factory Information	5
2.4 General Description for Equipment under Test (EUT)	5
2.5 Ancillary Equipment	9
2.6 Technical Information	9
3 SUMMARY OF TEST RESULTS	
3.1 Test Standards	10
3.2 Verdict	11
3.3 Test Uncertainty	13
4 GENERAL TEST CONFIGURATIONS	14
4.1 Test Environments	14
4.2 Test Equipment List	14
4.3 Test Enclosure list	
4.4 Test Configurations	
4.5 Description of Test Setup	
4.6 Test Conditions	21
5 TEST ITEMS	22
5.1 Emission Tests	22
5.2 Immunity Tests	24

ANNEX A TEST RESULTS	32
A.1 Radiated Emission	
A.2 Conducted Emission	34
A.3 Electrostatic Discharge Immunity	
A.4 Radio Frequency Electromagnetic Field Immunity	
A.5 Electrical Fast Transient/Burst Immunity	37
A.6 Surge Immunity	37
A.7 Immunity to Conducted Disturbances Induced by RF Fields	37
A.8 Power Frequency Magnetic Fields Immunity	
A.9 Voltage Dips and Short Interruptions Immunity	
ANNEX B TEST SETUP PHOTOS	39
ANNEX C EUT EXTERNAL PHOTOS	40
ANNEX D EUT INTERNAL PHOTOS	44

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
	Room 104, 204, 205, Building 1, No. 6, Industrial South Road,
Address	Songshan Lake District, Dongguan, Guangdong Province, P. R. China
	523808
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
	Room 104, 204, 205, Building 1, No. 6, Industrial South Road,		
Address	Songshan Lake District, Dongguan, Guangdong Province, P. R. China		
	523808		
	The laboratory is a testing organization accredited by China National		
Accreditation Certificate	Accreditation Service for Conformity Assessment (CNAS) according to		
	ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Room 104, 204, 205, Building 1, No. 6, Industrial South		
	Road, Songshan Lake District, Dongguan, Guangdong Province, P. R.		
	China 523808		

1.3 Laboratory Condition

Ambient Temperature	20°C to 25°C
Ambient Relative Humidity	45% to 55%
Ambient Pressure	100 kPa to 102 kPa

1.4Announce

- (1) The test report reference to the report template version v1.1.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	EVOLVE ENERGY GROUP CO., LIMITED
Address	RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK

2.2 Manufacturer Information

Manufacturer	EVOLVE ENERGY GROUP CO., LIMITED
Address	RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK

2.3 Factory Information

Factory	Dongguan SOFAR SOLAR Co., Ltd.	
Addrose	1F - 6F, Building E, No. 1 JinQi Road, Bihu Industrial Park, Wulian	
Address	Village, Fenggang Town, Dongguan City.	

2.4 General Description for Equipment under Test (EUT)

EUT Name	Solar Grid-tied Inverter
Mode Name Under Test	E-136KTL-HV
Sorioo Model Nemo	E-75KTL, E-80KTL, E-100KTL, E-100KTL-HV, E-110KTL,
Series model name	E-125KTL-HV, E-136KTL-HV
	The variants models have the same appearance, topology, PCB
	board. The specifications of Boost inductors, inverter inductors and
Description of Model	power devices will be differentiated according to different power levels.
name differentiation	The output power is different and controlled by software. The control
	software is the same for each model.
	Please refer to the parameter table and labels for specific differences.
Hardware Version	N/A
Software Version	ARM:V020010, DSPS:V020010, DSPM:V020010

Parameter table:

Model	E-75KTL	E-80KTL	E-100KTL	E-110KTL	E-100KTL-HV	E-125KTL-HV	E-136KTL-HV
DC Input	DC Input						
Max. DC voltage				1	100V		
Rated input voltage		62	25V		725V 785V		
Start-up operating voltage				2	200V		
MPPT voltage range		180V~1000V					
Full power MPPT voltage range	500V-850V 550V-850V						
Max. input current	8*26A 10*26A						
Max. input short circuit current	8*40A			10*40A			
AC Output							
Rated power	75kW	80kW	100kW	110kW	100kW	125kW	136kW
Max. AC power	75kVA	88kVA	110kVA	121kVA	110kVA	137kVA	150kVA
Max. output current	113A	128A	160A	175A	128A	160A	160A
Nominal grid voltage	3/N/PE, 380V/400Vac			3/PE, 5	500Vac	3/PE, 540Vac	
Nominal output freqency	50Hz/60Hz						
Output power factor	1 default (adjustable +/-0.8)						
Operating temperature range	-30°C ~60°C						
Ingress protection	IP66						
Protective class	Class I						
Main difference							
The Number of inductances BOOST	٤	3	10			12	
The Number of modules BOOST	4			5		6	

Labels:

	Ε	V	Λ		0
--	---	---	---	--	---

Solar Grid-tied Inverter

Model No:	E-75KTL
Max.DC Input Voltage	1100V
Operating MPPT Voltage Ran	ige 180~1000V
Max. Input Current	8*26A
Max. PV Isc	8*40A
Rated Grid Voltage	3/N/PE,380/400Vac
Max.Output Current	113A
Rated Grid Frequency	50/60Hz
Rated Output Power	75KW
Max.Output Power	75KVA
Power Factor	1(adjustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Rar	nge30°C~+60°C
Protective Class	Class I
Overvoltage Category	AC III,DC II
Made in China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

EVVO

Solar Grid-tied Inverter

<u>/ss</u>/

Model No:	E-100KTL
Max.DC Input Voltage	1100V
Operating MPPT Voltage Ran	nge 180~1000V
Max. Input Current	10*26A
Max. PV Isc	10*40A
Rated Grid Voltage	3/N/PE,380/400Vac
Max.Output Current	160A
Rated Grid Frequency	50/60Hz
Rated Output Power	100KW
Max.Output Power	110KVA
Power Factor	1(adjustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Rar	nge30°C~+60°C
Protective Class	Class I
Overvoltage Category	AC III, DC II
Factory - Shenzhen China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

$\mathbf{V} \mathbf{A} \mathbf{V}$	
'/ \ '/	

Solar Grid-tied Inverter

Model No:	E-80KTL
Max.DC Input Voltage	1100V
Operating MPPT Voltage Rar	nge180~1000V
Max. Input Current	8*26A
Max. PV Isc	8*40A
Rated Grid Voltage	3/N/PE,380/400Vac
Max.Output Current	128A
Rated Grid Frequency	50/60Hz
Rated Output Power	80KW
Max.Output Power	88KVA
Power Factor	1(adjustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Rai	nge _30°C~+60°C
Protective Class	Class I
Overvoltage Category	AC III,DC II
Factory - Shenzhen China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate

Chennai 600098 India

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

Solar Grid-tied Inverter

/\$\$\$

Model No:	E-100KTL-HV
Max.DC Input Voltage	1100V
Operating MPPT Voltage Range	180~1000V
Max. Input Current	10*26A
Max. PV Isc	10*40A
Rated Grid Voltage	3/PE,500Vac
Max.Output Current	128A
Rated Grid Frequency	50/60Hz
Rated Output Power	100KW
Max.Output Power	110KVA
Power Factor 1(a	djustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Range	<u>30°C~+60°C</u>
Protective Class	Class I
Overvoltage Category	AC III,DC II
Made in China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India

💷 \land C E 🔨 💩 🔺 🗵

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

/55

<u>/</u>

EVVO

Solar Grid-tied Inverter

Model No:	E-110KTL
Max.DC Input Voltage	<u>1100V</u>
Operating MPPT Voltage Ran	ge 180~1000V
Max. Input Current	10*26A
Max. PV Isc	10*40A
Rated Grid Voltage	3/N/PE,380/400Vac
Max.Output Current	175A
Rated Grid Frequency	50/60Hz
Rated Output Power	110KW
Max.Output Power	121KVA
Power Factor	1(adjustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Rar	<u>ige30°C~+60°C</u>
Protective Class	Class I
Overvoltage Category	AC III,DC II
Made in China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK

Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

EVVO

Solar Grid-tied Inverter

Model No:	E-125KTL-HV
Max.DC Input Voltage	1100V
Operating MPPT Voltage Range	180~1000V
Max. Input Current	10*26A
Max. PV Isc	10*40A
Rated Grid Voltage	3/PE,500Vac
Max.Output Current	160A
Rated Grid Frequency	50/60Hz
Rated Output Power	125KW
Max.Output Power	137KVA
Power Factor 1(a	djustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Range	
Protective Class	Class I
Overvoltage Category	AC III,DC II
Made in China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India

VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

EVVO

/

Solar Grid-tied Inverter

Model No:	E-136KTL-HV
Max.DC Input Voltage	1100V
Operating MPPT Voltage Range	180~1000V
Max. Input Current	10*26A
Max. PV Isc	10*40A
Rated Grid Voltage	3/PE,540Vac
Max.Output Current	160A
Rated Grid Frequency	50/60Hz
Rated Output Power	136KW
Max.Output Power	150KVA
Power Factor 1(a	djustable+/-0.8)
Ingress Protection	IP66
Operating Temperature Range	<u>30°C~+60°C</u>
Protective Class	Class I
Overvoltage Category	AC III,DC II
Made in China	

Manufacturer : EVOLVE ENERGY GROUP CO., LIMITED Address :RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK Global Head Quarters 371 Sidco Industrial Estate Chennai 600098 India VDE0126-1-1,VDE-AR-N4105,G99,IEC61727 IEC62116,AS4777

2.5 Ancillary Equipment

Note: not applicable.

2.6 Technical Information

Interfaces	AC Ports	From mains to AC port.	
present	DC Ports	From power supply to EUT.	
on the	Telecom Port	No Telecom Ports.	
EUT	Signal Ports	RS-485, which cable length does not exceed 3m.	
		The equipment is Solar Grid-tied Inverter, the above EUT information	
About the Product		was declared by manufacturer and for more detailed features	
		description, please refer to the manufacturer's specifications or	
		user's manual.	

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

The objective of the report is to perform testing according to following standards:

Identity	Document Title	
IEC 61000 6 2:2016	Electromagnetic compatibility (EMC) — Part 6-2: Generic	
IEC 01000-0-2.2010	standards — Immunity standard for industrial environments	
	Electromagnetic compatibility (EMC) — Part 6-4: Generic	
IEC 01000-0-4.2018	standards — Emission standard for industrial environments	

3.2 Verdict

No.	Base Standard	Description		Test Verdict	Result	Remark
Emiss	sion					
1	IEC 61000-6-4	Radiated Emission	Below 1 GHz	Р	Annex A.1	Note 1
			AC Ports	Р	Annov	
2	IEC 61000-6-4	Conducted Emission	Telecom Ports	N	Annex A.2	Note 2
Immu	nity					
3	IEC 61000-4-2	Electrostatic Discharge Immunity	Electrostatic Discharge Immunity		Annex A.3	
4	IEC 61000-4-3	Radiated RF Electromagnetic Field Immunity		Р	Annex A.4	
		Fleetrical Fast Transient/Durat	AC Ports	Р	A	
5 IEC 61000-4-4		DC Ports	Р			
			Signal Ports	N	A.5	Note 3
			AC Ports	Р	Annov	
6	IEC 61000-4-5	Surge Immunity	DC Ports	Р	Annex A.6	
			Signal Ports	N		Note 4
		Immunity to Conducted	AC Ports	P Anr	Annov	
7	IEC 61000-4-6	Disturbances Induced by RF	DC Ports			
		Fields	Signal Ports	N	A.7	Note 3
8	IEC 61000-4-8	Power-frequency magnetic field		Р	Annex A.8	
9	IEC 61000-4-34	Voltage Dips and Short Interruptions Immunity AC Ports		Р	Annex A.9	

Note 1: If the internal emission source(s) is operating at a frequency below 9 kHz then measurements need only to be performed up to 230 MHz.

Note 2: Telecommunications/network port is a point of connection for voice, data and signaling transfers intended to interconnect widely dispersed systems via such means as direct connection to multi-user telecommunications networks, local area networks and similar networks. A port generally intended for interconnection of components of an ITE system under test and used in accordance with its functional specifications, is not considered to be a telecommunication port. The EUT does not have telecommunication port according to above definition.

Note 3: Signal/control port is a port at which a conductor or cable intended to carry signals is connected to the equipment. Applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 3 m. The signal ports cable length of EUT is less than 2m.

Note 4: Signal/control port is a port at which a conductor or cable intended to carry signals is connected to the equipment. Applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 30 m. The signal ports cable length of EUT is less than 2m.

Note 5: The differences between this report and the report No. BL-DG2070052-402(G2), which was issued by Shenzhen BALUN Technology Co., Ltd. on Dec. 09, 2020 is that :

a: Change the applicant information, manufacturer information and series model.

b: Update the labels, EUT external photos and EUT internal photos.

The sample under test is the same. All the test result data please refer to report No. BL-DG2070052-402(G2),

which was issued by Shenzhen BALUN Technology Co., Ltd. on Dec. 09, 2020.

Ρ

This report judges the test conclusions:

- ——Not applicable for this test product N
- ——Meet requirements
- ——Does not meet the requirements F

3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (Mains port)	3.77 dB
Conducted emissions (Telecom port)	4.54 dB
Radiated emissions (30 MHz-1 GHz)	4.81 dB
Radiated emissions (1 GHz-18 GHz)	5.41 dB

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

Environment Deremeter	Selected Values During Tests			
	Temperature	Voltage	Relative Humidity	Ambient Pressure
Normal Temperature, Normal Voltage (NTNV)	23°C ~ 25°C	AC 540V DC 180V~1000V	50% ~ 55%	100kPa ~ 102kPa

4.2 Test Equipment List

Radiated Emission Test For Frequency Below 1 GHz					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EMI Receiver	Keysight	N9038A	MY55330115	2020.03.16	2021.03.15
Test Antenna- Bi-Log	SCHWARZBECK	VULB 9163	9163-1202	2018.12.20	2021.12.19
Anechoic Chamber	YIHENG ELECTRONIC	12.0m*7.0m* 7.5m	N/A	2019.03.05	2022.03.04

Conducted Emission					
Description	Manufacturer Model Serial No. Cal. Date Cal				Cal. Due
EMI Receiver	Keysight	N9038A	MY55330115	2020.03.16	2021.03.15
LISN	SCHWARZBECK	NNLK 8129	8129-462	2020.03.16	2021.03.15
Anechoic Chamber	YIHENG	12.0m*7.0m*	N/A	2019.03.05	2022.03.04
	ELECTRONIC	7.5m			

Electrostatic Discharge Immunity Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
ESD Test System	SCHLODER	SESD 30000	607339	2020.03.16	2021.03.15

Radiated RF Electromagnetic Field Immunity Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Anachaia Chambar	YIHENG	12.0m*7.0m*	NI/A	2010 02 05	2022 02 04
	ELECTRONIC	7.5m	IN/A	2019.03.03	2022.03.04
Signal Concreter	ROHDE&SCHWA	NE101A	MV50141079	2020 02 16	2021 02 15
Signal Generator	RZ	NSTOTA	WIT50141976	2020.03.10	2021.03.15
Dowor Amplifior	rflight	NTWPA-0081	18093198	2020.03.16	2021.03.15
		0200E			
Power Amplifier	rflight	NTWPA-1060	18093195	2020.03.16	2021 03 15
	migrit	100E			2021.03.15
Power Meter	Agilent	E4417A	GB41292042	2020.02.08	2021.02.07
Feld Strength Meter	Narda	EP601	511WX51129	2020.03.16	2021.03.15
Test Antenna-		enna-	0162 1202	2019 12 20	2021 12 10
Bi-Log		VULD 9103	9103-1202	2010.12.20	2021.12.19
Test Antenna-Horn	SCHWARZBECK	BBHA 9120D	9120D-1986	2018.12.20	2021.12.19

Electrical Fast Transient/Burst Immunity Test					
Description	Manufacturer Model Serial No. Cal. Date Cal. Due				
EFT Test System	HTEC	HEFT 51	1331011	2020.03.16	2021.03.15
EFT coupling	HTEC	ECDN 51	150601	2020.03.16	2021.03.15
network					

Transients and Surges Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
SURGE Generator (AC/DC Ports)	HTEC	HCWG 70	151601	2020.03.16	2021.03.15
SURGE coupling network (AC/DC Ports)	HTEC	SCDN303P7	151602	2020.03.16	2021.03.15

Immunity to Conducted Disturbances Induced by RF Fields					
Description Manufacturer Model Serial No. Cal. Date Cal. Due					
Conducted Disturbances Test System	Schloder GmbH	CDG 6000	18901932-01 01	2020.03.16	2021.03.15
CDN-M5	Schloder GmbH	CDN-M5	A2560005	2020.03.16	2021.03.15

Voltage Dips and Short Interruptions Immunity Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Voltage Fault					
Simulating	HTEC	HPFS303P	152301	2020.03.16	2021.03.15
Generator					
Voltage Fault	ЦТЕС		150200	2020 02 16	2021 02 15
Coupling Network	HIEC	HV3P30	152302	2020.03.16	2021.03.15

Power Frequency Magnetic Fields Immunity					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Magnetic Field		HPFMF	183102	2020.03.16	2021.03.15
Tester	HEAFELY	1000			

4.3 Test Enclosure list

Name	Manufacturer	Model	Serial No.	Length	Description
DC Source	WKDY	WLPA-150KW	W20180626011	N/A	N/A
AC Source	WKDY	WLPA-33075KVA	N/A	N/A	N/A

4.4 Test Configurations

Test Configurations (TC) No.	Description
TC01	The Grid-connected Test mode (Full Load)
1001	EUT+ DC Source+AC Grid
TC02	The Grid-connected Test mode (10% Load)
	EUT+ DC Source+AC Grid
TC03	The Standby Test mode
	EUT+AC Grid

4.5 Description of Test Setup

Test Setup 1 For Radiated Emission Test (30 MHz-1 GHz)

Test Setup 2 For Conducted disturbance voltage Test

Test Setup 3 For Electrostatic Discharge Immunity Test

Test Setup 4 For Radiated Immunity Test

Test Setup 5 For Electrical Fast Transient / Burst Immunity Test

Test Setup 6 For Surge Immunity Test

Test Setup 7 For Immunity to Conducted Disturbances Induced By RF Fields Test

Test Setup 8 Power Frequency Magnetic Fields

Test Setup 9 For Voltage Dips and Short Interruptions Immunity Test

4.6 Test Conditions

Test Case	Test Conditions			
	Test Env.	NTNV		
Radiated Emission	Test Setup	Test Setup 1		
	Test Configuration	TC01, TC03		
	Test Env.	NTNV		
Conducted Emission	Test Setup	Test Setup 2		
	Test Configuration	TC01,TC03		
Electrostatio Dischargo	Test Env.	NTNV		
	Test Setup	Test Setup 3		
ininianity	Test Configuration	TC02		
Radiated RF	Test Env.	NTNV		
Electromagnetic Field	Test Setup	Test Setup 4		
Immunity	Test Configuration	TC02		
Electrical Fast	Test Env.	NTNV		
Transient/Burst	Test Setup	Test Setup 5		
Immunity	Test Configuration	TC02		
	Test Env.	NTNV		
Surge Immunity	Test Setup	Test Setup 6		
	Test Configuration	TC02		
Immunity to Conducted	Test Env.	NTNV		
Disturbances Induced	Test Setup	Test Setup 7		
by RF Fields	Test Configuration	TC02		
Dowor froguenov	Test Env.	NTNV		
Power-frequency	Test Setup	Test Setup 8		
magnetic neiu	Test Configuration	TC02		
Valtage Ding and Short	Test Env.	NTNV		
	Test Setup	Test Setup 9		
Interruptions immunity	Test Configuration	TC02		
Note: Based on client request, all normal using modes of the normal function were tested but only				

the worst test data of the worst mode is reported by this report. The Grid-connected Test mode (Full Load) is the worst test mode in this report.

5 TEST ITEMS

5.1 Emission Tests

5.1.1 Radiated Emission

5.1.1.1 Limit

Frequency	Distance (at 3 m)	Distance (at 10 m)	Distance (at 30 m)		
range (MHz)	Quasi-Peak Limit (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Quasi-Peak Limit (dBµV/m)		
30 - 230	50	40	30		
230 - 1000	57	47	37		

NOTE:

1) At transitional frequencies the lower limit applies.

2) If the internal emission source(s) is operating at a frequency below 9 kHz then measurements need only to be performed up to 230 MHz.

5.1.1.2 Test Procedure

All Radiated Emission tests were performed in the azimuth plane. And test data and plots are recorded in this test report.

An initial pre-scan was performed in the chamber using the EMI Receiver in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bi-Log antenna with 2 orthogonal polarities.

5.1.2 Conducted Emission

5.1.2.1 Test Limit

AC Port

Frequency range	Clas	ss B
(MHz)	Quasi-peak (dBuV)	Average (dBuV)
0.15 - 0.50	79	66
0.50 - 30	73	60

NOTE:

1) At transitional frequencies the lower limit applies.

Telecom Port

	Class B			
Frequency (MHZ)	Quasi-peak (dBuV)	Average (dBuV)		
0.15 - 0.50	97-87	84-74		
0.50 - 30	87	74		

NOTE:

- 1) At transitional frequencies the lower limit applies.
- 2) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50 MHz.
- 3) The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the telecommunication port under test (conversion factor is 20 log10 150 / I = 44 dB).

5.1.2.2 Test Procedure

The EUT is connected to the power mains through a LISN which provides 50 Ω /50 μ H of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Telecommunication port was checked to find out the maximum conducted emission

5.2 Immunity Tests

- 5.2.1 Test Performance Criteria for Immunity Test
- 5.2.1.1 General Performance Criteria

Туре	Description
	The apparatus shall continue to operate as intended during and after the test. No
	degradation of performance or loss of function is allowed below a performance
	level specified by the manufacturer, when the apparatus is used as intended. The
Critorion A	performance level may be replaced by a permissible loss of performance. If the
Chienon A	minimum performance level or the permissible performance loss is not specified
	by the manufacturer, either of these may be derived from the product description
	and documentation and what the user may reasonably expect from the apparatus
	if used as intended.
	The apparatus shall continue to operate as intended after the test. No degradation
	of performance or loss of function is allowed below a performance level specified
	by the manufacturer, when the apparatus is used as intended. The performance
	level may be replaced by a permissible loss of performance. During the test,
Criterion B	degradation of performance is however allowed. No change of actual operating
	state or stored data is allowed. If the minimum performance level or the
	permissible performance loss is not specified by the manufacturer, either of these
	may be derived from the product description and documentation and what the
	user may reasonably expect from the apparatus if used as intended.
Criterion C	Temporary loss of function is allowed, provided the function is self-recoverable or
	can be restored by the operation of the controls.

5.2.2 Electrostatic Discharge Immunity

5.2.2.1 Test Specification

Specification	Value		
Basic Standard	IEC 61000-4-2		
Discharge Impedance	330 Ohm / 150 pF		
Discharge Voltage	Air Discharge: 2 kV; 4 kV; 8 kV; Contact Discharge: 2 kV; 4 kV		
Polarity	Positive / Negative		
Number of Discharge	Minimum 20 times at each test point		
Discharge Mode	Single discharge		
Discharge Period	1 second minimum		

5.2.2.2 Test Procedure

1. Electrostatic discharges are applied only to those points and surfaces of the EUT that are accessible to users during normal operation.

2. The test is performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

3. The time interval between two successive single discharges is at least 1 second.

4. The ESD generator is held perpendicularly to the surface to which the discharge is applied and the return cable is at least 0.2 meters from the EUT.

5. Contact discharges are applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.

6. Air discharges are applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator is removed from the EUT and re-triggered for a new single discharge. The test is repeated until all discharges were completed.

7. At least ten single discharges (in the most sensitive polarity) are applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator is positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.

8. At least ten single discharges (in the most sensitive polarity) are applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5 m*0.5 m) is placed vertically to and 0.1 meters from the EUT.

5.2.3 Radio Frequency Electromagnetic Field Immunity

5.2.3.1 Test Specification

Specification	Value			
Basic Standard	IEC 61000-4-3			
Frequency Range	80 MHz to 1000 MHz	1.4 GHz to 6.0 GHz		
Field Strongth	$10 \ \text{Mm}$ (upmodulated rm c)	3 V/m		
Field Stieligti	10 v/m (unmodulated, 1.m.s)	(unmodulated, r.m.s)		
Modulation	1 kHz sine wave, 80%, AM modulation			
Frequency Step	1% of fundamental			
Polarity of Antenna	Horizontal and Vertical			
Test Distance	3 m			
Antenna Height	1.5 m			
Dwell Time	3 seconds			

NOTE:

- 1) Except for the ITU broadcast frequency bands 87 MHz to 108 MHz, 174 MHz to 230 MHz, and 470 MHz to 790 MHz, where the level shall be 3 V/m.
- 2) The frequency range has been selected to cover the frequencies with the highest potential risk of a disturbance.

5.2.3.2 Test Procedure

1. The testing is performed in a fully anechoic chamber. The transmit antenna is located at a distance of 3 meters from the EUT.

2. The test signal is 80% amplitude modulated with a 1 kHz sine wave.

3. The frequency range is swept with the exception of the exclusion band for transmitters, receivers and duplex transceivers. The rate of sweep does not exceed 1.5*10-3 decade/s. Where the frequency range is swept incrementally, the step size is 1% of fundamental.

4. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.

5. The field strength level is 10 V/m, 3 V/m for the corresponding frequency.

6. The test is performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides, but only the worst side data is reported in this report.

5.2.4 Electrical Fast Transient / Burst Immunity

5.2.4.1 Test Specification

Specification	Value		
Basic Standard	IEC 61000-4-4		
Toot \/oltogo	AC Power Port: 2 kV, DC Power Ports: 1 kV.		
Test voltage	Signal Ports: 1 kV.		
Polarity	Positive / Negative		
Impulse Frequency	5 kHz		
Impulse Wave Shape	5/50 ns		
Burst Duration	15 ms		
Burst Period	300 ms		
Test Duration	> 1 min		

NOTE:

- 1. The signal ports test applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 3 m.
- 2. The DC ports test not applicable to input ports intended for connection to a battery or a rechargeable battery which must be removed or disconnected from the apparatus for recharging. Apparatus with a DC power input port intended for use with an AC–DC power adaptor shall be tested on the AC power input of the AC-DC power adaptor specified by the manufacturer or, where none is so specified, using a typical AC–DC power adaptor. The test is applicable to DC power input ports intended to be connected permanently to cables longer than 3 m.

5.2.4.2 Test Procedure

- 1. The EUT is tested with 2000 V discharges to the AC or DC power input leads, 1000 V for signal port.
- 2. Both positive and negative polarity discharges are applied.
- 3. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 m.
- 4. The duration time of each test sequential is 1min.
- 5. The transient / burst waveform is in accordance with IEC 61000-4-4, 5/50 ns.

5.2.5 Surge Immunity

5.2.5.1 Test Specification

Specification	Value				
Ports class	AC Power Port	DC Power Port	Signal Port		
Basic Standard		IEC 61000-4-5			
Movoform	Voltage: 1.2/50 µs;	Voltage: 1.2/50 µs;	Voltage: 1.2/50 µs;		
vvavelonn	Current: 8/20 µs	Current: 8/20 µs	Current: 8/20 µs		
Test Voltage	line to ground 2 kV; line to line 1 kV	0.5 kV	1 kV		
Polarity	Positive / Negative				
Phase Angle	0°, 90°, 180°, 270°	N/A	N/A		
Repetition Rate	60 seconds				
Times	5 times per condition				

NOTE:

- 1. Signal Port test Applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 30 m.
- 2. Signal Port test Where normal functioning cannot be achieved because of the impact of the CDN on the EUT, this test is not required.
- 3. DC Port test Not applicable to input ports intended for connection to a battery or a rechargeable battery which must be removed or disconnected from the apparatus for recharging. Apparatus with a DC power input port intended for use with an AC–DC power adaptor shall be tested on the AC power input of the AC–DC power adaptor specified by the manufacturer or, where none is so specified, using a typical AC–DC power adaptor. DC ports, which are not intended to be connected to a DC distribution network are treated as signal ports.

5.2.5.2 Test Procedure

The EUT and the auxiliary equipment are placed on a table of 0.8 m heights above a metal ground reference plane. The size of ground plane is greater than 1 m*1 m and project beyond the EUT by at least 0.1 m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT is less than 2 meters (provided by the manufacturer).

The EUT is connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise is applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).

The surges are applied line to line and line(s) to earth. When testing line to earth the test voltage is applied successively between each of the lines and earth. Set up to the test level specified increased the test voltage. All lower levels including the selected test level are tested. The polarity of each surge level included positive and negative test pulses.

5.2.6 Immunity to Conducted Disturbances Induced by RF Fields

5.2.6.1 Test Specification

Specification	Value
Basic Standard	IEC 61000-4-6
Frequency Range	0.15 MHz – 80 MHz
Test Voltage	10 Vrms (unmodulated, r.m.s)
Modulation	1 kHz sine wave, 80% AM
Frequency Step	1% of fundamental
Coupled Cable	AC Power Line; DC Power Line; Signal Line
Coupling Device	CDN-M5, EM Clamp

Note:

- 1) Except for the ITU broadcast frequency band 47 MHz to 68 MHz, where the level shall be 3V/m.
- 2) The test level can also be defined as the equivalent current into a 150 Ω load.
- 3) The DC port and signal port only apply to ports interfacing with cables whose total length according to the manufacturers functional specification may exceed 3 m.

5.2.6.2 Test Procedure

The EUT shall be tested within its intended operating and climatic conditions.

The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 150 Ohm load resistor.

The test signal is 80% amplitude modulated with a 1 kHz sine wave.

The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The sweep rate shall not exceed 1.5*10-3 decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.

The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.

Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

5.2.7 Power Frequency Magnetic Fields Immunity

5.2.7.1 Test Specification

Value
IEC 61000-4-8
50/60 Hz
30 A/m
Horizontal and Vertical
5 min

NOTE:

1. The test shall be carried out at the frequencies appropriate to the power supply frequency. Equipment intended for use in areas supplied only at one of these frequencies need only be tested at that frequency.

2. Applicable only to apparatus containing devices susceptible to magnetic fields.

5.2.7.2 Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1 m*1 m) and shown in Section 15.1. The induction coil shall then be rotated by 90°in order to expose the EUT to the test field with different orientations.

5.2.8 Voltage Dips and Short Interruptions Immunity

5.2.8.1 Test Specification

AC Ports

Specification	Value
Basic Standard	IEC 61000-4-34
Frequency	50/60Hz
) (altana Dina	100% reduction: 20 ms;60% reduction: 200/240 ms;
voltage Dips	30% reduction: 500/600 ms
Voltage Interruptions	100% reduction: 5000/6000 ms
Voltage Phase Angle	0°

NOTE: Applicable only to AC input ports.

5.2.8.2 Test Procedure

The power cord is used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.

The EUT is tested for a) 100% voltage dip of supplied voltage with duration of 20 ms; b) 60% voltage dip of supplied voltage with duration of 200 or 240 ms; c) 30% voltage dip of supplied voltage and duration 500 or 600 ms. Both of the dip tests are carried out for a sequence of three voltage dips with intervals of 10 seconds.

100% voltage interruption of supplied voltage with duration of 5000 or 6000 ms is followed, which is a sequence of three voltage interruptions with intervals of 10 seconds.

Voltage reductions occur at 0 degrees crossover point of the voltage waveform. The performance of the EUT is checked after the voltage dip or interruption.

ANNEX A TEST RESULTS

A.1 Radiated Emission

Note 1: The symbol of "--" in the table which means not applicable.

Note 2: Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30 MHz to 1000 MHz. To reduce the testing time, a peak measuring receiver may be used instead of a quasi-peak measuring receiver. In case of dispute, measurement with a quasi-peak measuring receiver will take precedence.

Test Data and Plots

The worst test mode: The Grid-connected Test mode (Full Load)

30 MHz – 1 GHz

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)			(cm)		
1	38.002	28.87	-27.61	50.0	-21.13	Peak	347.00	300	Horizontal	Р
2	80.683	31.60	-31.52	50.0	-18.40	Peak	95.00	200	Horizontal	Р
3	135.488	43.36	-30.97	50.0	-6.64	Peak	235.00	200	Horizontal	Р
4*	183.783	48.02	-28.76	50.0	-1.98	QP	48.00	188	Horizontal	Р
5*	191.110	45.74	-27.98	50.0	-4.26	QP	72.00	128	Horizontal	Р
6	207.510	46.76	-27.37	50.0	-3.24	Peak	342.00	100	Horizontal	Р

Test Antenna Vertical

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)			(cm)		
1	38.245	43.31	-27.54	50.0	-6.69	Peak	27.00	100	Vertical	Р
2	46.975	40.69	-25.94	50.0	-9.31	Peak	252.00	100	Vertical	Р
3	113.420	40.42	-28.11	50.0	-9.58	Peak	238.00	100	Vertical	Р
4*	188.167	41.34	-28.32	50.0	-8.66	QP	238.00	157	Vertical	Р
5	247.280	36.23	-25.73	57.0	-20.77	Peak	360.00	200	Vertical	Р
6	289.233	35.45	-24.72	57.0	-21.55	Peak	360.00	200	Vertical	Р

A.2 Conducted Emission

AC Port

Test Data and Plots

The worst test mode: The Grid-connected Test mode (Full Load)

No.	Frequency	Results (dBuV)	Factor (dB)	Limit (dBuV)	Over Limit	Detector	Line	Verdict
	(MHz)				(dB)			
1	0.238	61.27	30.02	79.00	-17.73	Peak	L1	Р
1**	0.238	53.57	30.02	66.00	-12.43	AV	L1	Р
2	0.370	57.91	30.05	79.00	-21.09	Peak	L1	Р
2**	0.370	37.86	30.05	66.00	-28.14	AV	L1	Р
3	0.616	54.55	30.09	73.00	-18.45	Peak	L1	Р
3**	0.616	38.92	30.09	60.00	-21.08	AV	L1	Р
4	2.280	53.02	30.05	73.00	-19.98	Peak	L1	Р
4**	2.280	48.42	30.05	60.00	-11.58	AV	L1	Р
5	3.000	58.20	30.06	73.00	-14.80	Peak	L1	Р
5**	3.000	54.41	30.06	60.00	-5.59	AV	L1	Р
6	12.478	46.97	29.99	73.00	-26.03	Peak	L1	Р
6**	12.478	38.93	29.99	60.00	-21.07	AV	L1	Р

L2 Phase

No.	Frequency	Results (dBuV)	Factor (dB)	Limit (dBuV)	Over Limit	Detector	Line	Verdict
	(MHz)				(dB)			
1	0.156	60.22	30.07	79.00	-18.78	Peak	L2	Р
1**	0.156	48.92	30.07	66.00	-17.08	AV	L2	Р
2	0.240	60.66	30.01	79.00	-18.34	Peak	L2	Р
2**	0.240	50.87	30.01	66.00	-15.13	AV	L2	Р
3	0.686	51.73	30.02	73.00	-21.27	Peak	L2	Р
3**	0.686	38.21	30.02	60.00	-21.79	AV	L2	Р
4	2.278	49.14	30.05	73.00	-23.86	Peak	L2	Р
4**	2.278	40.69	30.05	60.00	-19.31	AV	L2	Р
5	3.358	57.84	30.09	73.00	-15.16	Peak	L2	Р
5**	3.358	53.50	30.09	60.00	-6.50	AV	L2	Р
6	4.262	48.43	30.04	73.00	-24.57	Peak	L2	Р
6**	4.262	44.06	30.04	60.00	-15.94	AV	L2	Р

No.	Frequency	Results (dBuV)	Factor (dB)	Limit (dBuV)	Over Limit	Detector	Line	Verdict
	(MHz)				(dB)			
1	0.164	59.94	29.88	79.00	-19.06	Peak	L3	Р
1**	0.164	48.61	29.88	66.00	-17.39	AV	L3	Р
2	0.198	59.25	29.96	79.00	-19.75	Peak	L3	Р
2**	0.198	51.45	29.96	66.00	-14.55	AV	L3	Р
3	0.640	53.92	30.01	73.00	-19.08	Peak	L3	Р
3**	0.640	41.75	30.01	60.00	-18.25	AV	L3	Р
4	2.280	56.98	30.05	73.00	-16.02	Peak	L3	Р
4**	2.280	51.22	30.05	60.00	-8.78	AV	L3	Р
5	3.360	59.16	30.09	73.00	-13.84	Peak	L3	Р
5**	3.360	56.19	30.09	60.00	-3.81	AV	L3	Р
6	12.460	49.05	30.00	73.00	-23.95	Peak	L3	Р
6**	12.460	41.51	30.00	60.00	-18.49	AV	L3	Р

A.3 Electrostatic Discharge Immunity

Test Points	Discharge	Disabarga Mada	Number of	Met	Required	Vordiot	
Test Follits	Level (kV)	Discharge Mode	Discharge	Criteria	Criteria	Verdict	
HCP	±2, 4kV	Connect discharge	100	Α	В	Р	
VCP	±2, 4kV	Connect discharge	100	Α	В	Р	
Metal screw	±2, 4kV	Connect discharge	160	Α	В	Р	
Heat sink	±2, 4kV	Connect discharge	160	Α	В	Р	
Display screen	±2, 4, 8kV	Air discharge	160	A	В	Р	
Button	±2, 4, 8kV	Air discharge	160	A	В	Р	

A.4 Radio Frequency Electromagnetic Field Immunity

Antenna Polarity	Frequency (MHz)	Side	Field Strength (V/m)	Met Criteria	Required Criteria	Verdict
Vertical	80 - 1000	Front, Back, Left, Right	10	Α	А	Р
Horizontal	80 - 1000	Front, Back, Left, Right	10	A	А	Р
Vertical	1400 - 6000	Front, Back, Left, Right	3	Α	А	Р
Horizontal	1400 - 6000	Front, Back, Left, Right	3	A	Α	Р

A.5 Electrical Fast Transient/Burst Immunity

Test Port	Test Point	Polarity	Test Level (kV)	Met Criteria	Required Criteria	Verdict
AC Port	L1+L2+L3+PE	+/-	0.5,1,2	A	В	Р
DC Port	+&-	+/-	0.5,1	A	В	Р

A.6 Surge Immunity

Times	5 times for positive and negative		Time ir	nterval	60s		
Test Port	Coupling Line	Polarity	Voltage (kV)	Test Waveform	Met Criteria	Required Criteria	Verdict
AC Port	L1-L2, L1-L3, L2-L3	+/-	0.5,1	1.2/50us	A	В	Р
AC Port	L1-PE, L2-PE, L3-PE	+/-	0.5,1,2	1.2/50us	В	В	Р
DC Port	+ & -	+ / -	0.5	1.2/50us	A	В	Р

A.7 Immunity to Conducted Disturbances Induced by RF Fields

Test Port	Frequency (MHz)	Test Voltage (V)	Met Criteria	Required Criteria	Verdict
AC Port	0.15 - 80	10	A	A	Р
DC Port	0.15 - 80	10	A	A	Р

A.8 Power Frequency Magnetic Fields Immunity

Test direction	Test level(A/m)	Met Criteria	Required Criteria	Verdict
Х	30	A	А	Р
Y	30	А	А	Р
Z	30	А	A	Р

A.9 Voltage Dips and Short Interruptions Immunity

Test Mode	Residual voltage (%)	Duration (ms)	Times	Interval (sec)	Met Criteria	Required Criteria	Verdict
Voltage Dips	0	20	3	10	А	В	Р
Voltage Dips	40	200	3	10	А	С	Р
Voltage Dips	70	500	3	10	А	С	Р
Voltage Interruptions	0	5000	3	10	В	С	Р

ANNEX B TEST SETUP PHOTOS

Note: TEST SETUP PHOTOS please refer to original test report No.BL-DG2070052-402(G2) issued by Shenzhen BALUN Technology Co., Ltd. On Dec. 09, 2020 section **ANNEX B TEST SETUP PHOTOS**.

ANNEX C EUT EXTERNAL PHOTOS

Bottom (E-100KTL, E-110KTL, E-100KTL-HV, E-125KTL-HV)

Bottom (E-136KTL-HV)

DC connection interface (E-75KTL, E-80KTL)

DC connection interface (E-100KTL, E-110KTL, E-100KTL-HV, E-125KTL-HV)

DC connection interface (E-136KTL-HV)

ANNEX D EUT INTERNAL PHOTOS

Bottom of the machine

Upper part of the machine

The front of power board

The back of power board

The front of output board

The back of power board

The front of power circuit board

The back of power circuit board

The front of BUS capacitor board

The back of BUS capacitor board

The front of EMI input filter board

The front of lightning protection board

The back of lightning protection board

The front of communication board

The back of communication board

The front of display screen

The back of display screen

Output relay

Insulation resistance detection relay

Transformer

Leakage current sensor

X capacitance

IGBT

INV inductance

Boost inductance

Gas discharge tube

Differential mode inductor

Common mode inductance

Optocoupler

AC current sense

Y capacitance

Serial Number

Soft Version: ARM

Soft Version: DSPS

Soft Version: DSPM

--END OF REPORT--